If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+7y-9=0
a = 6; b = 7; c = -9;
Δ = b2-4ac
Δ = 72-4·6·(-9)
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{265}}{2*6}=\frac{-7-\sqrt{265}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{265}}{2*6}=\frac{-7+\sqrt{265}}{12} $
| 8-(x+7)=5(x+6)-2 | | -12+8(6x-1)=7(8x+3) | | 4x/5+2=3x/10 | | x^2-12=4x+56-4(x+1) | | 0.9a=0.9+0.7a | | 10-2(x-8)=4+3(x+7) | | 7(w+6)-5w=36 | | 1/2x=9/2 | | 2(w-2)=1 | | x−1=3x−4 | | 56-7x=-x | | 2x-3=(4x+9 | | -n+7=5(1-5n)+2 | | 8y+3=8y-9 | | 8x+9+2x=49 | | 14+7x-3(x+2)=6-(x-4) | | -6u+3(u-3)=-21 | | 5d+24=1 | | 95=1+2(6x-1) | | 2w+10+8w=-38 | | 2x+6x+3(x+1)=5(x+3) | | 2(m+80)+50=(m+50)-70 | | 2(y+8)+5y=-5 | | 7/6=4/n+5 | | 6(5x-2)=12+3x | | -3(k-8)-k+5)=23 | | 4+3(7k-5)=-11-6k | | 6(3b+6)=126 | | -4(u+7)=1 | | 8/3x-4=3/x+1 | | 15+2(x-2)=-10-(2x+1) | | 7x-1+4x-3=42 |